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Problem LDFCF-1. What are two main reasons why there is a range of possible outcomes 
around the “expected” reserve? (Clark, p. 3) 
 
Solution LDFCF-1. The following are the two main reasons why there is a range of possible 
outcomes around the “expected” reserve (Clark, p. 3): 
Reason 1. Random “process” variance 
Reason 2. Uncertainty in the estimate of the expected value  
 
Problem LDFCF-2. What are two key elements of a statistical loss-reserving model? (Clark, p. 
3) 
 
Solution LDFCF-2. The following are the two key elements of a statistical loss-reserving model 
(Clark, p. 3): 
Element 1. The expected amount of loss to emerge in some time period 
Element 2. The distribution of actual emergence around the expected value 
 
Problem LDFCF-3. The model developed by Clark estimates the expected amount of loss based 
on which two estimates? (Clark, p. 5)  
 
Solution LDFCF-3. The model developed by Clark estimates the expected amount of loss based 
on: 
(i) An estimate of the ultimate loss by year; 
(ii) An estimate of the pattern of loss emergence. (Clark, p. 5) 
 
Problem LDFCF-4.  
(a) Let LDFx be the loss-development factor at time x. What is the formula for the cumulative 
distribution function (CDF) G(x), which represents the cumulative percent of losses reported or 
paid (depending on whether reported losses or paid losses are being evaluated) as of time x?  
(b) What specific assumption does Clark make regarding the time index x? 
(Clark, p. 5) 
 

https://www.casact.org/pubs/forum/03fforum/03ff041.pdf
http://creativecommons.org/licenses/by-sa/3.0/
https://www.casact.org/pubs/forum/03fforum/03ff041.pdf
https://www.casact.org/pubs/forum/03fforum/03ff041.pdf
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Solution LDFCF-4.   
(a) G(x) = 1/LDFx. 
(b) Clark assumes that the time index x represents the time from the “average” accident date to 
the evaluation date. (Clark, p. 5) 
 
Problem LDFCF-5. 
(a) What are the conceptual descriptions of the parameters θ and ω, common to the Weibull and 
Loglogistic distributions? (Clark, p. 5) 
(b) What is another name for the Loglogistic curve? (Clark, pp. 5-6) 
(c) Which distribution, the Weibull or the Loglogistic, generally provides a smaller “tail” factor?  
(Clark, p. 6) 
 
Solution LDFCF-5.  
(a) θ is the scale parameter.  
ω is the shape or warp parameter.  
(b) Another name for the Loglogistic curve is the inverse power curve. 
(c) The Weibull distribution generally provides a smaller “tail” factor than the Loglogistic 
distribution. (Clark, pp. 5-6) 
 
Problem LDFCF-6.  
(a) What is the formula for G(x │ω, θ), the cumulative distribution function of the Loglogistic 
distribution? 
(b) What is the formula for LDFx if x follows a Loglogistic distribution? 
(c) What is the formula for G(x │ω, θ), the cumulative distribution function of the Weibull 
distribution? 
(d) What assumption does the use of both the Loglogistic and Weibull curves make, and what is 
a situation that, if expected, should preclude using them? (Clark, p. 6) 
 
Solution LDFCF-6.  
(a) Loglogistic distribution CDF: G(x │ω, θ) = xω/(xω + θω).  
(b) Loglogistic distribution LDF: LDFx = 1 + θω/xω. 
(c) Weibull distribution CDF: G(x │ω, θ) = 1 – exp(-(x/θ)ω). 
(d) Both the Loglogistic and Weibull curves assume that expected loss emergence follows a 
strictly increasing pattern. If there is expected negative development, these curves should not 
be used. (Actual negative development can be accommodated to a certain extent, as long as it is 
minor and the overall expected development is positive.) (Clark, p. 6) 
 
Problem LDFCF-7. What are three advantages to using parametrized curves to describe the 
expected loss-emergence pattern? (Clark, p. 6) 
 
Solution LDFCF-7.  
Advantage 1. The estimation problem is simplified, because we only need to estimate the two 
parameters. 
Advantage 2. We can use data that are not strictly from a triangle with evenly spaced evaluation 
dates. 
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Advantage 3. The final indicated pattern is a smooth curve and does not follow every random 
movement in the historical age-to-age factors.  
 
Problem LDFCF-8. What are the key differences between the LDF method and the Cape Cod 
method in the assumptions regarding independence of ultimate losses in each accident year? 
(Clark, pp. 6-7) 
 
Solution LDFCF-8. The LDF method assumes that the ultimate loss amount in each accident 
year is independent of the losses in other years. 
 
The Cape Cod method assumes that there is a known relationship between the amount of 
ultimate loss expected in each of the years of the historical period, and that this relationship is 
identified by an exposure base (usually on-level premium, but possibly another index such as 
sales or payroll) which can be assumed to be proportional to expected loss. (Clark, pp. 6-7) 
 
Problem LDFCF-9. Let μAY:x,y be the expected incremental loss amount in accident year AY 
between ages x and y.  
 
(a) For the Cape Cod method, given premium PAY for accident year AY, expected loss ratio 
ELR, and a cumulative distribution function G(t │ω, θ) for any nonnegative values of t, what is 
the expression for μAY:x,y? 
(b) How many parameters are involved in this application of the Cape Cod method, and what are 
they?  (Clark, p. 7) 
 
Solution LDFCF-9. 
(a) μAY:x,y =  PAY*ELR*[G(y │ω, θ) - G(x │ω, θ)]. 
(b) 3 parameters: ELR, ω, θ 
(Clark, p. 7) 
 
Problem LDFCF-10. Let μAY:x,y be the expected incremental loss amount in accident year AY 
between ages x and y.  
 
(a) For the LDF method, given ultimate losses ULTAY for accident year AY and a cumulative 
distribution function G(t │ω, θ) for any nonnegative values of t, what is the expression for 
μAY:x,y? 
(b) How many parameters are involved in this application of the LDF method, and what are 
they?  (Clark, p. 7) 
 
Solution LDFCF-10. 
(a) μAY:x,y = ULTAY*[G(y │ω, θ) - G(x │ω, θ)]. 
(b) (n+2) parameters: n accident years, ω, θ 
(Clark, p. 7) 
 
Problem LDFCF-11. What problem does the use of Clark’s LDF method pose, that Clark’s 
Cape Cod method can overcome? (Clark, pp. 7-8) 
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Solution LDFCF-11. Clark’s LDF method suffers from the problem of overparametrization, 
where there is a separate parameter for each accident year. With a loss-development triangle, 
where there are relatively few data points, having too many parameters is a serious issue. The 
Cape Cod method overcomes this problem by only utilizing three parameters, the expected loss 
ratio and the two parameters of the parametrized curve. (Clark, pp. 7-8) 
 
Problem LDFCF-12. It is assumed that loss emergence (using a time scale of years) follows a 
Weibull distribution with parameters θ = 4 and ω = 2. Moreover, it is given that, for Accident 
Year 3030, the expected loss ratio is 46%, and the premium is 3,000,000. 
 
Using Clark’s Cape Cod method, what is the expected incremental loss amount for Accident 
Year 3030 between 1 year and 4 years?  
 
Solution LDFCF-12. 
We use the formula μAY:x,y =  PAY*ELR*[G(y │ω, θ) - G(x │ω, θ)]. We are asked to find μAY:1,4, 
where PAY = 3,000,000, and ELR = 46%.  
 
For a Weibull distribution, G(t │ω, θ) = 1 – exp(-(t/θ)ω).  
We find G(1 │2, 4) = 1 – exp(-(1/4)2) = 0.0605869372. 
We find G(4 │2, 4) = 1 – exp(-(4/4)2) = 0.6321205588. 
 
Thus, μAY:1,4 = 3000000*0.46*(0.6321205588 - 0.0605869372) = 788,716.4. 
 
Problem LDFCF-13. Fill in the blanks (Clark, p. 8): Compared to the LDF method, the Cape 
Cod method may have higher __________, but will usually produce significantly smaller 
_________. This is due to the value of the ________ in the _________ provided by the user.  
 
Solution LDFCF-13. Compared to the LDF method, the Cape Cod method may have higher 
process variance, but will usually produce significantly smaller estimation error. This is due to 
the value of the information in the exposure base provided by the user. (Clark, p. 8) 
 
Problem LDFCF-14. Identify and briefly describe the two “pieces” of variance that Clark’s 
model estimates. (Clark, p. 9) 
 
Solution LDFCF-14. The two “pieces” of variance are (i) process variance – the “random” 
amount of the variance and (ii) parameter variance – the uncertainty in the estimator. (Clark, p. 
9) 
 
Problem LDFCF-15. Let μAY,t be the expected incremental loss amount in accident year AY 
over time t. Let cAY,t be the actual incremental loss amount in accident year AY over time t. Let 
p be the number of parameters and n be the number of observations.  
(a) What is the formula for the approximation for σ2, which in this case is equal to the ratio of 
the variance over the mean of the loss emergence? 
(b) The expression in part (a) is equivalent to what kind of term known in statistical theory? 
(c) For estimating the parameters in Clark’s model, it is assumed that the actual incremental loss 
emergence c follows what distribution? (Clark, p. 9) 



Study Guide on LDF Curve-Fitting and Stochastic Reserving for SOA Exam GIADV – G. Stolyarov II 
 

5 

 

 
Solution LDFCF-15.  
(a) σ2 ≈ [1/(n-p)]*AY,t

nΣ[(cAY,t - μAY,t)2/μAY,t].  
(b) This expression is equivalent to a chi-square error term. 
(c) It is assumed that the actual incremental loss emergence c follows an over-dispersed Poisson 
distribution. (Clark, p. 9) 
 
Problem LDFCF-16. You are given that, for a standard Poisson distribution,  
Pr(x) = λx*exp(-λ)/x! and E[x] = Var(x) = λ.  
Now suppose that you are working with an over-dispersed Poisson distribution for actual loss 
amount c = x*σ2. The parameter of this over-dispersed Poisson distribution is also λ. 
 
(a) What is the expression for Pr(c), the probability of any given loss amount c? 
(b) What is the expression for E[c] = μ, the expected value of c? 
(c) What is the expression for Var(c), the variance of c, in terms of λ? 
(d) What is the expression for Var(c), the variance of c, in terms of μ? 
(Clark, p. 10) 
 
Solution LDFCF-16.  
(a) Pr(c) = λc/σ^2*exp(-λ)/(c/σ2)! 
(b) E[c] = μ = λ*σ2. 
(c) Var(c) = λ*σ4. 
(d) Var(c) = μ*σ2. 
 
Problem LDFCF-17. What are two advantages of using the over-dispersed Poisson model for 
actual loss amounts? (Clark, p. 10) 
 
Solution LDFCF-17.  
Advantage 1. The scaling factor in the model allows matching of the first and second moments 
of any distribution, which gives the model a high degree of flexibility.  
Advantage 2. Maximum likelihood estimation exactly produces the LDF and Cape Cod 
estimates of ultimate. These results can be presented in a format familiar to reserving actuaries.  
(Clark, p. 10) 
 
Problem LDFCF-18. 
(a) Why, according to Clark, is it not a concern that, using an over-dispersed Poisson model, the 
distribution of ultimate reserves is approximated by a discretized (rather than a continuous) 
curve? 
(b) What advantage does the use of a discrete distribution have in the context of modeling loss 
emergence? (Clark, p. 10) 
 
Solution LDFCF-18.  
(a) The scale factor σ2 is usually small relative to the mean, so little precision is lost from using a 
discretized curve. 
(b) A discrete distribution allows for a probability mass point at zero, which represents cases 
where there is no change in loss in a given development increment. (Clark, p. 10) 
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Problem LDFCF-19. A general expression for the likelihood function of x is Πi[Pr(xi)].  
(a) Given that the actual loss amount c = x*σ2 follows an over-dispersed Poisson distribution, 
with values ci and parameter λi for each i, what is the formula for the likelihood function for c, in 
terms of c and λ? 
(b) Given that E[c] = μ = λ*σ2, what is the formula for the likelihood function for c, in terms of c 
and μ? (Clark, p. 10) 
(c) What is the formula for the loglikelihood function of c, which is the natural logarithm of the 
likelihood function?  
(d) In this loglikelihood function, if the scale parameter σ2 is known, then the maximum 
likelihood estimation becomes a matter of maximizing which quantity? 
(Clark, p. 11) 
 
Solution LDFCF-19.  (a) Likelihood = Πi[λi

c_i/σ^2*exp(-λi)/(ci/σ2)!]. 
(b) Likelihood = Πi[(μi/σ2)c_i/σ^2*exp(-μi/σ2)/(ci/σ2)!]. 
(c) LogLikelihood = Σi[(ci/σ2)*ln(μi/σ2) – μi/σ2 – ln((ci/σ2)!)]  
(d) If σ2 is known, then the quantity to be maximized becomes  
Σi[(ci)*ln(μi) – μi].  
 
Problem LDFCF-20. You are given the following notation: 
• ci,t = Actual loss in accident year i, development period t 
• Pi = Premium for accident year i 
• xt-1 = Beginning age for development period t 
• xt = Ending age for development period t 
• G(x) = Cumulative distribution function of x 
You are using Clark’s Cape Cod model. Let ELR be the expected loss ratio. 
(a) What is the formula for the loglikelihood function? 
(b) What is the formula for the first derivative of the loglikelihood function with respect to ELR? 
(c) What is the formula for the maximum likelihood estimate (MLE) of ELR? 
(Clark, pp. 11-12) 
 
Solution LDFCF-20.  
(a) LogLikelihood = Σi,t(ci,t*ln(ELR*Pi*[G(xt) – G(xt-1)]) – ELR*Pi*[G(xt) – G(xt-1)]). 
(b) ∂(LogLikelihood)/∂(ELR) = Σi,t(ci,t/ELR - Pi*[G(xt) – G(xt-1)]). 
(c) MLE of ELR: ELR = Σi,t(ci,t)/Σi,t(Pi*[G(xt) – G(xt-1)]). 
 
Problem LDFCF-21. You are given the following notation: 
• ci,t = Actual loss in accident year i, development period t 
• ULTi = Ultimate loss for accident year i 
• xt-1 = Beginning age for development period t 
• xt = Ending age for development period t 
• G(x) = Cumulative distribution function of x 
You are using Clark’s LDF model. 
(a) What is the formula for the loglikelihood function? 
(b) What is the formula for the first derivative of the loglikelihood function with respect to 
ULTi? 
(c) What is the formula for the maximum likelihood estimate (MLE) of ULTi? (Clark, p. 12) 



Study Guide on LDF Curve-Fitting and Stochastic Reserving for SOA Exam GIADV – G. Stolyarov II 
 

7 

 

Solution LDFCF-21.  
(a) LogLikelihood = Σi,t(ci,t*ln(ULTi*[G(xt) – G(xt-1)]) – ULTi*[G(xt) – G(xt-1)]). 
(b) ∂(LogLikelihood)/∂(ELR) = Σt(ci,t/ULTi - [G(xt) – G(xt-1)]). 
(c) MLE of ULTi: ULTi = Σt(ci,t)/Σt([G(xt) – G(xt-1)]). 
 
Problem LDFCF-22. What is an advantage that the maximum likelihood estimates for ELR 
using the Cape Cod method and each ULTi using the LDF method would present in terms of 
overcoming the problem of overparametrization? (Clark, p. 12)  
 
Solution LDFCF-22. Each maximum likelihood estimate can be set based on the parameters θ 
and ω from the parametric curve, thereby reducing the 3 parameters of the Cape Cod method to 2 
and reducing the (n + 2) parameters of the LDF method to 2. (Clark, p. 12) 
 
Problem LDFCF-23. Fill in the blanks (Clark, p. 12): Using Clark’s model, the maximum 
loglikelihood function never takes the logarithm of ____________. Therefore, the model will 
work even if some of these amounts are _________ or ________________.  
 
Solution LDFCF-23.  Using Clark’s model, the maximum loglikelihood function never takes the 
logarithm of the actual incremental development. Therefore, the model will work even if some 
of these amounts are zero or negative. (Clark, p. 12) 
 
Problem LDFCF-24. Suppose you are using Mack’s Cape Cod method with parameters ELR, 
ω, and θ.  Suppose the loglikelihood function is denoted as ɭy,t for each accident year y and 
development period t.  
 
Fill in the values of the 3-by-3 second-derivative information matrix [I] below for Mack’s Cape 
Cod method using the following second-derivative notation:  y,tΣ[(∂2 ɭy,t)/ ∂□], where □ will vary 
depending on the matrix entry. (Clark, p. 13) 
 
   
   
   
 
Solution LDFCF-24. Consider the matrix as having ELR, ω, and θ as horizontal and vertical 
labels: 
 
 ELR ω θ 

ELR    
ω    
θ    

 
Then, for each matrix entry, take the partial derivative of ɭy,t with respect to the horizontal 
variable and then the partial derivative of ɭy,t with respect to the vertical variable (in either order).  
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The matrix will look as follows. 
 
 ELR ω θ 

ELR y,tΣ[(∂2 ɭy,t)/ ∂(ELR)2] y,tΣ[(∂2 ɭy,t)/ (∂(ELR)∂ω)] y,tΣ[(∂2 ɭy,t)/(∂(ELR) 
∂θ)] 

ω y,tΣ[(∂2 ɭy,t)/(∂ω ∂(ELR))] y,tΣ[(∂2 ɭy,t)/ ∂ω2] y,tΣ[(∂2 ɭy,t)/(∂ω ∂θ)] 
θ y,tΣ[(∂2 ɭy,t)/(∂θ ∂(ELR))] y,tΣ[(∂2 ɭy,t)/ (∂θ ∂ω)] y,tΣ[(∂2 ɭy,t)/ ∂θ2] 

 
Problem LDFCF-25. Suppose you are using Mack’s Cape Cod method with parameters ELR, 
ω, and θ.  Let σ2 be the (Variance/Mean) scaling factor. Let [I] be the second-derivative 
information matrix. Let [Σ] be the covariance matrix.  
 
(a) Provide an inequality expressing [Σ] as being greater than or equal to a matrix expressed in 
terms of [I]. 
(b) Write out the terms of the 3-by-3 matrix  [Σ]. (Clark, p. 13) 
 
   
   
   
 
Solution LDFCF-25. 
(a) [Σ] ≥ -σ2*[I]-1, where [I] -1 is the inverse of [I].  
(b) The terms of [Σ] are the following:  
 
Var(ELR) Cov(ELR, ω) Cov(ELR, θ) 
Cov(ω, ELR) Var(ω) Cov(ω, θ) 
Cov(θ, ELR) Cov(θ, ω) Var(θ) 
 
Problem LDFCF-26. Suppose you are using Mack’s LDF method with four accident years, and 
separate ultimate-loss estimates for each accident year. The parameters are ULT1, ULT2, ULT3, 
ULT4, ω, and θ. Suppose the loglikelihood function is denoted as ɭy,t for each accident year y and 
development period t.  
 
Fill in the values of the 6-by-6 second-derivative information matrix [I] for Mack’s LDF method 
using the following second-derivative notation: y,tΣ[(∂2 ɭy,t)/ ∂□], where □ will vary depending on 
the matrix entry, and the value of y may also vary by accident year. (Clark, p. 14) 
 
Solution LDFCF-26. 
 
Consider the matrix as having ULT1, ULT2, ULT3, ULT4, ω, and θ as horizontal and vertical 
labels. 
 
Then, for each matrix entry, take the partial derivative of ɭy,t with respect to the horizontal 
variable and then the partial derivative of ɭy,t with respect to the vertical variable (in either order).  
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When a partial derivative is taken with respect to one ULT parameter and then with respect to a 
different ULT parameter, the result will be 0, since the ultimate losses for different accident 
years are independent of one another. For any derivative with respect to ULTn (where n is a 
specific accident year) the summation will only be taken over t, and will be a partial derivative of 
ɭn,t for just that n, rather than over all y.  
  
The matrix will look as follows. 
 
 ULT1 ULT2 ULT3 ULT4 ω θ 
ULT1 tΣ[(∂2ɭ1,t)/ 

∂(ULT1)2] 0 0 0 tΣ[(∂2ɭ1,t)/ 
∂(ULT1)∂(ω)] 

tΣ[(∂2ɭ1,t)/ 
∂(ULT1)∂(θ)] 

ULT2 0 tΣ[(∂2ɭ2,t)/ 
∂(ULT2)2] 0 0 tΣ[(∂2ɭ2,t)/ 

∂(ULT2)∂(ω)] 
tΣ[(∂2ɭ2,t)/ 

∂(ULT2)∂(θ)] 
ULT3 0 0 tΣ[(∂2ɭ3,t)/ 

∂(ULT3)2] 0 tΣ[(∂2ɭ3,t)/ 
∂(ULT3)∂(ω)] 

tΣ[(∂2ɭ3,t)/ 
∂(ULT3)∂(θ)] 

ULT4 0 0 0 tΣ[(∂2ɭ4,t)/ 
∂(ULT4)2] 

tΣ[(∂2ɭ4,t)/ 
∂(ULT4)∂(ω)] 

tΣ[(∂2ɭ4,t)/ 
∂(ULT4)∂(θ)] 

ω tΣ[(∂2ɭ1,t)/ 
∂(ω)∂(ULT1)] 

tΣ[(∂2ɭ2,t)/ 
∂(ω)∂(ULT2)] 

tΣ[(∂2ɭ3,t)/ 
∂(ω)∂(ULT3)] 

tΣ[(∂2ɭ4,t)/ 
∂(ω)∂(ULT4)] y,tΣ[(∂2 ɭy,t)/ ∂ω2] y,tΣ[(∂2 ɭy,t)/ 

(∂ω ∂θ)] 
θ tΣ[(∂2ɭ1,t)/ 

∂(θ)∂(ULT1)] 
tΣ[(∂2ɭ2,t)/ 

∂(θ)∂(ULT2)] 
tΣ[(∂2ɭ3,t)/ 

∂(θ)∂(ULT3)] 
tΣ[(∂2ɭ4,t)/ 

∂(θ)∂(ULT4)] 
y,tΣ[(∂2 ɭy,t)/ 

(∂θ ∂ω)] 
y,tΣ[(∂2 ɭy,t)/ 

∂θ2] 

 
Problem LDFCF-27. You are given an estimate of loss reserves R. Let μAY:x,y be the expected 
incremental loss amount in accident year AY between ages x and y. Let Σ(μAY:x,y) be the sum of 
such incremental loss amounts over a group of periods. Let σ2 be (Variance/Mean) scale factor. 
Furthermore, let [Σ] be the covariance matrix of parameters and let [∂R] be the vector of partial 
derivatives of R with respect to each parameter of the method being used (either Clark’s Cape 
Cod method or Clark’s LDF method). Let [∂R]T be the transpose of vector [∂R]. 
 
(a) Provide an expression for the process variance of R.  
(b) Provide an expression for the parameter variance / estimation error of R.  
(c) If Clark’s Cape Cod method with parameters ELR, ω, and θ is used, state the vector ∂R. 
(d) If Clark’s LDF method with parameters ULT1, ULT2, ULT3, ω, and θ is used, state the 
vector ∂R. (Clark, p. 14) 
 
Solution LDFCF-27. (a) Process Variance of R: σ2*Σ(μAY:x,y) 
(b) Parameter Variance of R: [∂R]T*[Σ]*[∂R] 
(c) Cape Cod Method: [∂R] = <∂R/∂(ELR), ∂R/∂ω, ∂R/∂θ> 
(d) LDF Method: [∂R] = <∂R/∂(ULT1), ∂R/∂(ULT2), ∂R/∂(ULT3), ∂R/∂ω, ∂R/∂θ> 
 
Problem LDFCF-28. Using Clark’s Cape Cod method with parameters ELR, ω, and θ, suppose 
that Pi is the premium for any accident period i under consideration. It is desired to model loss 
emergence from time xi to time yi in each accident period i. Let G(t) be the cumulative 
distribution function for the distribution of loss emergence (described by parameters ω and θ). 
(a) What is the formula for the future reserve R? 
(b) What is the formula for ∂R/∂(ELR)? 
(c) What is the formula for ∂R/∂ω? 
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(d) What is the formula for ∂R/∂θ? (Clark, p. 15) 
Solution LDFCF-28. 
(a) R = Σi[Pi*ELR*(G(yi) - G(xi))] 
(b) ∂R/∂(ELR) = Σi[Pi*(G(yi) - G(xi))] 
(c) ∂R/∂ω = Σi[Pi*ELR*(∂[G(yi)]/∂ω – ∂[G(xi)]/∂ω)] 
(d) ∂R/∂θ = Σi[Pi*ELR*(∂[G(yi)]/∂θ – ∂[G(xi)]/∂θ)] 
 
Problem LDFCF-29. You are using Clark’s LDF method with parameters ULTi, ω, and θ. It is 
desired to model loss emergence from time xi to time yi in each accident period i. Let G(t) be the 
cumulative distribution function for the distribution of loss emergence (described by parameters 
ω and θ). 
 
(a) What is the formula for the future reserve R? 
(b) What is the formula for ∂R/∂(ULT2)? 
(c) What is the formula for ∂R/∂ω? 
(d) What is the formula for ∂R/∂θ? 
(Clark, p. 15) 
 
Solution LDFCF-29.  
(a) R = Σi[ULTi(G(yi) - G(xi))] 
(b) ∂R/∂(ULT2) = (G(y2) - G(x2))  (For i ≠ 2, all the other terms are constant with respect to 
ULT2, and so their partial derivative with respect to ULT2 is 0.) 
(c) ∂R/∂ω = Σi[ULTi*(∂[G(yi)]/∂ω – ∂[G(xi)]/∂ω)] 
(d) ∂R/∂θ = Σi[ULTi *(∂[G(yi)]/∂θ – ∂[G(xi)]/∂θ)] 
 
Problem LDFCF-30. Identify the three key assumptions of Clark’s model. (Clark, pp. 16-17)  
 
Solution LDFCF-30. 
Assumption 1. Incremental losses are independent and identically distributed (iid). 
Assumption 2. The Variance/Mean Scale Parameter σ2 is fixed and known. 
Assumption 3. Variance estimates are based on an approximation to the Rao-Cramer lower 
bound. (Clark, pp. 16-17) 
 
Problem LDFCF-31.  
(a) What does the independence assumption of incremental losses mean in a reserving context? 
(b) Give an example of how this assumption might be violated in reality and a positive 
correlation might be present instead. 
(c) Give an example of how this assumption might be violated in reality and a negative 
correlation might be present instead. (Clark, p. 16) 
 
Solution LDFCF-31.  
(a) The independence assumption means that one period does not affect the surrounding periods. 
(b) A positive correlation might exist if all periods are equally affected by an increase in loss 
inflation. 
(c) A negative correlation might exist if a large settlement in one period replaces a stream of 
payments in later periods. (Clark, p. 16) 
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Problem LDFCF-32.  
(a) What does the “identically distributed” assumption of incremental losses mean in a reserving 
context? 
(b) What are two reasons why this assumption is unrealistic? (Clark, p. 16) 
 
Solution LDFCF-32.  
(a) The “identically distributed” assumption means that the emergence pattern is the same for all 
accident years.  
(b) This assumption is unrealistic because: 
1. Different historical periods would have had different risks and a different mix of business 
written in each; and 
2. Different historical periods would have been subject to different claim-handling and 
settlement strategies. (Clark, p. 16) 
 
Problem LDFCF-33. Fill in the blanks (Clark, p. 17): Via the assumption that the 
Variance/Mean Scale Parameter σ2 is fixed and known, one is essentially ignoring the variance 
on the __________. In classical statistics, this assumption is typically relaxed by using the 
________ distribution instead of the Normal distribution. If this assumption is relaxed in a 
reserving context, the reserve ranges would ________ [increase, decrease, or stay the same?].  
 
Solution LDFCF-33. Via the assumption that the Variance/Mean Scale Parameter σ2 is fixed 
and known, one is essentially ignoring the variance on the variance. In classical statistics, this 
assumption is typically relaxed by using the Student-T distribution instead of the Normal 
distribution. If this assumption is relaxed in a reserving context, the reserve ranges would 
increase. (Clark, p. 17) 
 
Problem LDFCF-34. 
(a) Why is it necessary to use a Rao-Cramer lower bound as the variance estimate in Clark’s 
model? (Clark, p. 17) 
(b) Fill in the blanks (Clark, p. 17): Technically, the Rao-Cramer lower bound is based on the 
true expected values of the _________. However, because true ________ are not known, 
estimated values must be utilized, and the result is called the ________ information matrix, 
rather than the __________ information matrix.  
 
Solution LDFCF-34.  
(a) Only linear functions are amenable to exact estimates of variance based on the information 
matrix. Clark’s model utilizes non-linear functions and so requires the use of the Rao-Cramer 
lower bound as an approximation. (Clark, p. 17) 
(b) Technically, the Rao-Cramer lower bound is based on the true expected values of the second-
derivative matrix. However, because true parameters are not known, estimated values must be 
utilized, and the result is called the observed information matrix, rather than the expected 
information matrix. (Clark, p. 17) 
 
 
 



Study Guide on LDF Curve-Fitting and Stochastic Reserving for SOA Exam GIADV – G. Stolyarov II 
 

12 

 

Problem LDFCF-35. You are given the following cumulative loss-development triangle for paid 
claims: 
 
 12 months 24 months 36 months 48 months 60 months 72 months 
AY 2333 352,352 644,642 689,432 722,367 800,900 811,001 
AY 2334 352,123 555,424 712,900 815,515 818,923  
AY 2335 403,356 666,666 803,535 825,567   
AY 2336 399,218 544,554 600,666    
AY 2337 444,444 612,336     
AY 2338 422,198      
 
(a) Create the corresponding incremental loss-development triangle. 
 
(b) Rearrange the values of the incremental loss-development triangle into the tabular format 
presented by Clark (pp. 19, 36). 
 
(c) Now suppose that only the latest three maturities are available for each accident year as 
follows: 
 
 12 months 24 months 36 months 48 months 60 months 72 months 
AY 2333    722,367 800,900 811,001 
AY 2334   712,900 815,515 818,923  
AY 2335  666,666 803,535 825,567   
AY 2336 399,218 544,554 600,666    
AY 2337 444,444 612,336     
AY 2338 422,198      
Create the corresponding incremental loss-development triangle. 
 
(d) Rearrange this partial incremental loss-development triangle into the tabular format presented 
by Clark (pp. 20, 37). 
 
Solution LDFCF-35. 
(a) The incremental loss-development triangle looks as follows: 
  12 months 24 months 36 months 48 months 60 months 72 months 
AY 2333 352,352 292,290 44,790 32,935 78,533 10,101 
AY 2334 352,123 203,301 157,476 102,615 3,408   
AY 2335 403,356 263,310 136,869 22,032     
AY 2336 399,218 145,336 56,112       
AY 2337 444,444 167,892         
AY 2338 422,198           
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(b) The tabular format of the incremental triangle is as follows: 
 

Accident 
Year From To Increment Diagonal Age Total AY 

Loss 
2333 0 months 12 months 352,352 72 months 811,001 
2333 12 months 24 months 292,290 72 months 811,001 
2333 24 months 36 months 44,790 72 months 811,001 
2333 36 months 48 months 32,935 72 months 811,001 
2333 48 months 60 months 78,533 72 months 811,001 
2333 60 months 72 months 10,101 72 months 811,001 
2334 0 months 12 months 352,123 60 months 818,923 
2334 12 months 24 months 203,301 60 months 818,923 
2334 24 months 36 months 157,476 60 months 818,923 
2334 36 months 48 months 102,615 60 months 818,923 
2334 48 months 60 months 3,408 60 months 818,923 
2335 0 months 12 months 403,356 48 months 825,567 
2335 12 months 24 months 263,310 48 months 825,567 
2335 24 months 36 months 136,869 48 months 825,567 
2335 36 months 48 months 22,032 48 months 825,567 
2336 0 months 12 months 399,218 36 months 600,666 
2336 12 months 24 months 145,336 36 months 600,666 
2336 24 months 36 months 56,112 36 months 600,666 
2337 0 months 12 months 444,444 24 months 612,336 
2337 12 months 24 months 167,892 24 months 612,336 
2338 0 months 12 months 422,198 12 months 422,198 

 
(c) The partial incremental loss-development triangle looks as follows: 
 
  12 months 24 months 36 months 48 months 60 months 72 months 
AY 2333    722,367 78,533 10,101 
AY 2334   712,900 102,615 3,408   
AY 2335  666,666 136,869 22,032     
AY 2336 399,218 145,336 56,112       
AY 2337 444,444 167,892         
AY 2338 422,198           
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(b) The tabular format of the partial incremental triangle is as follows:  
 

Accident 
Year From To Increment Diagonal Age Total AY 

Loss 
2333 0 months 48 months 722,367 72 months 811,001 
2333 48 months 60 months 78,533 72 months 811,001 
2333 60 months 72 months 10,101 72 months 811,001 
2334 0 months 36 months 712,900 60 months 818,923 
2334 36 months 48 months 102,615 60 months 818,923 
2334 48 months 60 months 3,408 60 months 818,923 
2335 0 months 24 months 666,666 48 months 825,567 
2335 24 months 36 months 136,869 48 months 825,567 
2335 36 months 48 months 22,032 48 months 825,567 
2336 0 months 12 months 399,218 36 months 600,666 
2336 12 months 24 months 145,336 36 months 600,666 
2336 24 months 36 months 56,112 36 months 600,666 
2337 0 months 12 months 444,444 24 months 612,336 
2337 12 months 24 months 167,892 24 months 612,336 
2338 0 months 12 months 422,198 12 months 422,198 

 
Problem LDFCF-36. According to Clark, what is a common practical difficulty with 
development triangles that the use of the tabular format can easily resolve? (Clark, pp. 20-21) 
 
Solution LDFCF-36. A common practical difficulty is the use of irregular evaluation periods 
(other than multiples of 12 months or another recurring accident period). If the tabular format, 
this can be accommodated by simply changing the fields pertaining to evaluation age – e.g., the 
“From”, “To”, and “Diagonal Age” fields. (Clark, pp. 20-21) 
 
Problem LDFCF-37. Once data from a loss-development triangle has been arranged in a tabular 
format, a parametric curve can be fitted to the data. How are the fitted parameters typically 
found? (Clark, p. 21) 
 
Solution LDFCF-37. The fitted parameters are typically found via iteration, using a statistical 
software package or a spreadsheet.  
 
Problem LDFCF-38. You are given the following in Clark’s model: 
• σ2 is the  (Variance/Mean) scale parameter.  
• μ^AY:x,y is the estimated expected loss emergence for accident year AY from time x to time y.  
• cAY:x,y is the actual loss emergence for accident year AY from time x to time y. 
 
Provide the formula for the normalized residual, rAY:x,y. (Clark, p. 22) 
 
Solution LDFCF-38.  rAY:x,y = (cAY:x,y - μ^AY:x,y)/√(σ2*μ^AY:x,y) 
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Problem LDFCF-39. When applying Clark’s model and plotting normalized residuals on the 
vertical axis against the increment of loss emergence (i.e., increment age) on the horizontal axis, 
what is the desired outcome of the plot? (Clark, p. 22) 
 
Solution LDFCF-39. The desired outcome of the plot is that the residuals would be randomly 
scattered around the horizontal zero line, and there would be roughly constant variability across 
the increment ages. (Clark, p. 22) 
 
Problem LDFCF-40. Clark (pp. 22-23) discusses a plot of normalized residuals on the vertical 
axis against the expected incremental loss amount on the horizontal axis.  
(a) This graph is a useful check on what assumption? 
(b) What would we observe with regard to the residuals if the assumption in part (a) does not 
hold? 
 
Solution LDFCF-40. 
(a) This graph is a useful check on the assumption that the variance/mean ratio is constant 
(i.e., that the use of a single scale parameter σ2 is justified).  
(b) If the assumption of a constant variance/mean ratio does not hold, then we would expect to 
see residuals significantly closer to the zero line at one end of the graph. 
 
Problem LDFCF-41.  
(a) When applying Clark’s model and plotting normalized residuals on the vertical axis, against 
what two other quantities – besides increment age and expected incremental loss – could 
normalized residuals be plotted? 
(b) What is a desired attribute of each of the plots of normalized residuals in part (a)? (Clark, p. 
23) 
 
Solution LDFCF-41.  
(a) The normalized residuals could also be plotted against (i) calendar year of emergence, or 
(ii) accident year. 
(b) The desired attribute of the plots is always that the residuals appear to be scattered 
randomly around the zero line – or else some of the model’s assumptions would be incorrect. 
(Clark, p. 23) 
 
Problem LDFCF-42.  
(a) When loss emergence is fitted to a Loglogistic curve, what does Clark (p. 25) recommend as 
an effective way of reducing the reliance on extrapolation? 
(b) What distribution provides a lighter-tailed alternative to the Loglogistic curve?  
 
Solution LDFCF-42.  
(a) Selection of a truncation point is an effective way of reducing the reliance on extrapolation. 
(b) The Weibull distribution provides a lighter-tailed alternative to the Loglogistic curve. 
(Clark, p. 25) 
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Problem LDFCF-43.  
(a) Using Clark’s LDF method, how many observations are there, given a filled-out incremental 
loss-development triangle with n accident years? 
(b) How many parameters are there? 
(c) Which is more significant, the process variance or the parameter variance? 
(d) What is the main reason for the relationship in part (c) above? 
(Clark, p. 25) 
 
Solution LDFCF-43.  
(a) There are n(n+1)/2 = (n2+n)/2 observations. (This is the general formula for the sum of 
consecutive integers from 1 to n, which is applicable here, since there are n rows, starting with n 
observations from the earliest accident year and decreasing to one observation for the latest 
accident year.)  
(b) There are (n+2) parameters for Clark’s LDF method. 
(c) The parameter variance is more significant. 
(d) This is because of overparametrization. The (n2+n)/2 observations are not sufficient to 
estimate the (n+2) parameters. 
(Clark, p. 25) 
 
Problem LDFCF-44. According to Clark (p. 26), what is a fundamentally flawed assumption in 
the LDF method that results in overparametrization? 
 
Solution LDFCF-44. The flawed assumption is that the ultimate loss for each accident year is 
estimated independently from the ultimate losses in the other accident years – in effect assuming 
that knowledge of ultimate losses in one year would provide no information about ultimate losses 
in a proximate years. (Clark, p. 26) 
 
Problem LDFCF-45. To model loss emergence, you are using a Loglogistic curve (with time x 
being measured in months), with parameters ω = 1.6 and θ = 60. You are given the following 
information regarding losses emerged to date.  
 
Accident 

Year 
Reported 

Losses 
Age 

(Months) at 
12/31/2048 

Average 
Age (x) 

Growth 
Function 

Fitted 
LDF 

Ultimate 
Losses 

Estimated 
Reserves 

2044 5,361,236 60      
2045 3,636,951 48      
2046 3,290,333 36      
2047 3,333,331 24      
2048 1,204,564 12      

TOTAL 16,826,415 -----  ----- ----- -----   
 
(a) Fill out the rest of the table using Clark’s LDF method. (Clark, p. 23) 
(b) Now suppose that the Loglogistic curve is to be truncated at 240 months. Fill out the table 
with the “Fitted LDF” values replaced by a “Truncated LDF”, with ultimate losses and reserves 
adjusted accordingly. (Clark, p. 24) 
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Solution LDFCF-45. 
(a) First, we consider the average age of each year’s reported losses. Clark assumes that the 
average age is the midpoint of the year, and we can reflect this assumption by setting x equal to 
(Age at 12/31/2048 – 6 months).  
 
Next, we apply the Loglogistic growth curve G(x │ω, θ) = xω/(xω + θω). Therefore, for each 
value of Average Age (x), the corresponding  value of the curve will be  
G(x │1.6, 60) = x1.6/(x1.6 + 601.6). 
 
The Fitted LDF is equal to 1/(Growth Function). 
The Ultimate Losses are equal to (Reported Losses)*(Fitted LDF).  
The Estimated Reserves are equal to (Ultimate Losses) – (Reported Losses).  
 
The filled-out table looks as follows: 
Accident 

Year 
Reported 

Losses 
Age 

(Months) 
at 

12/31/2048 

Average 
Age (x) 

Growth 
Function 

Fitted LDF Ultimate 
Losses 

Estimated 
Reserves 

2044 5,361,236 60 54 0.45795532 2.18361915 11,706,898 6,345,662 
2045 3,636,951 48 42 0.36107995 2.76946972 10,072,426 6,435,475 
2046 3,290,333 36 30 0.24805075 4.03143313 13,264,757 9,974,424 
2047 3,333,331 24 18 0.12715441 7.8644539 26,214,828 22,881,497 
2048 1,204,564 12 6 0.02450337 40.8107171 49,159,121 47,954,557 

TOTAL 16,826,415 -----  ----- ----- ----- 110,418,029 93,591,614 
 
(b) Now applying the truncation factor at 240 months, this gives us an average age at truncation 
of 240 – 6 = 234 months. G(234 │1.6, 60) = 2341.6/(2341.6 + 601.6) = 0.8982164418. 
 
Thus, the Truncated LDF is equal to 0.8982164418/(Growth Function). 
 
The rest of the calculations follow the same format as those in part (a) above. 
The Ultimate Losses are equal to (Reported Losses)*(Truncated LDF).  
The Estimated Reserves are equal to (Ultimate Losses) – (Reported Losses).  
 
Accident 

Year 
Reported 

Losses 
Age 

(Months) 
at 

12/31/2048 

Average 
Age (x) 

Growth 
Function 

Truncated 
LDF 

Ultimate 
Losses 

Estimated 
Reserves 

2044 5,361,236 60 54 0.45795532 1.96136263 10,515,328 5,154,092 
2045 3,636,951 48 42 0.36107995 2.48758324 9,047,218 5,410,267 
2046 3,290,333 36 30 0.24805075 3.62109952 11,914,623 8,624,290 
2047 3,333,331 24 18 0.12715441 7.06398179 23,546,589 20,213,258 
2048 1,204,564 12 6 0.02450337 36.6568571 44,155,530 42,950,966 

TOTAL 16,826,415 -----  ----- ----- ----- 99,179,289 82,352,874 
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Problem LDFCF-46. 
(a) To apply the Cape Cod method, with what should the loss-development triangle be 
supplemented?  
(b) What data element is a good supplement for this purpose?  
(c) If a further refinement is desired, what additional adjustment could be made?  
(Clark, p. 26) 
 
Solution LDFCF-46.  
(a) The loss-development triangle should be supplemented with an exposure base that is 
believed to be proportional to ultimate expected losses by accident year. 
(b) On-level premium – i.e., premium adjusted to a common rate level per exposure – is a good 
candidate for the exposure base.  
(c) An additional adjustment for loss trend net of exposure trend could be made so that the cost 
level is the same for all years, along with the rate level. (Clark, p. 26) 
 
Problem LDFCF-47. Which method – the LDF method or the Cape Cod method – results in a 
lower overall reserve variance and standard deviation, and why? (Clark, p. 29) 
 
Solution LDFCF-47. The Cape Cod method results in a lower overall reserve variance and 
standard deviation, because it makes use of more information – e.g., the on-level premium by 
year – which is not available in the LDF method. The additional information allows a 
significantly better estimate of the reserve. (Clark, p. 29) 
 
Problem LDFCF-48. To model loss emergence, you are using a Weibull curve (with time x 
being measured in months), with parameters ω = 3 and θ = 40. You are given the following 
information regarding on-level premiums and losses emerged to date.  
 

AY On-Level 
Premium 

Reported 
Losses 

Age 
(Months) 

at Dec. 
31, 2048 

Avg. 
Age (x) 

Growth 
Function 

Premium * 
Growth 

Function  

Ultimate 
Loss Ratio 

Estimated 
Reserves 

2044 6,666,666 5,361,236 60      
2045 6,800,000 3,636,951 48      
2046 7,888,999 3,290,333 36      
2047 8,200,000 3,333,331 24      
2048 9,120,000 1,204,564 12      
SUM 38,675,665 16,826,415 -----  ----- -----    

 
Fill out the rest of the table using Clark’s Cape Cod method. (Clark, pp. 27-28) 
 
Solution LDFCF-48. 
First, we consider the average age of each year’s reported losses. Clark assumes that the average 
age is the midpoint of the year, and we can reflect this assumption by setting x equal to (Age at 
12/31/2048 – 6 months).  
 
Next, we apply the Weibull growth curve G(x │ω, θ) = 1 – exp(-(x/θ)ω). Therefore, for each 
value of Average Age (x), the corresponding value of the curve will be  
G(x │3, 40) = 1 – exp(-(x/40)3). These will be the values of the “Growth Function” column.  
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Next, we multiply the values in the “On-Level Premium” column by the corresponding values in 
the “Growth Function” column to get the values in the “Premium * Growth Function” column. 
 
The values in the “Ultimate Loss Ratio” column are equal to (Reported Losses)/(Premium * 
Growth Function). The total Ultimate Loss Ratio (the Cape Cod ELR) is equal to 
16,826,415/14,220,724 = 1.183232021 = 118.3232021%. 
 
Estimated Reserves for each row are equal to (On-Level Premium)*(Cape Cod ELR)*(1-Growth 
Function) = 118.3232021%*(On-Level Premium)*(1-Growth Function). The total estimated 
reserve is thus 28,935,867. 
 
The filled-out table looks as follows: 
 

AY On-Level 
Premium 

Reported 
Losses 

Age 
(Months) 

at Dec. 
31, 2048 

Avg. 
Age (x) 

Growth 
Function 

Premium * 
Growth 
Function  

Ultimate 
Loss Ratio 

Estimated 
Reserves 

2044 6,666,666 5,361,236 60 54 0.9145971 6,097,313 87.93% 673,676 
2045 6,800,000 3,636,951 48 42 0.6857684 4,663,225 77.99% 2,528,300 
2046 7,888,999 3,290,333 36 30 0.3441840 2,715,267 121.18% 6,121,725 
2047 8,200,000 3,333,331 24 18 0.0870964 714,191 466.73% 8,857,449 
2048 9,120,000 1,204,564 12 6 0.0033693 30,728 3920.07% 10,754,717 
SUM 38,675,665 16,826,415 -----  ----- ----- 14,220,724 118.3232% 28,935,867 

 
Problem LDFCF-49. When one uses Clark’s Cape Cod method and graphs ultimate loss ratios 
by year, what observed pattern would indicate a concern regarding bias introduced into the 
reserve estimate? (Clark, p. 28) 
 
Solution LDFCF-49. A pattern of increasing or decreasing ultimate loss ratios would indicate 
a concern regarding possible bias. (Clark, p. 28) 
 
Problem LDFCF-50. You are given the following estimated loss emergence and estimated 
reserves using Clark’s LDF method and a Loglogistic curve (with time x being measured in 
months), with parameters ω = 1.6 and θ = 60.  
 
Accident 

Year 
Reported 

Losses 
Age 

(Months) 
at 

12/31/2048 

Average 
Age (x) 

Growth 
Function 

Fitted LDF Ultimate 
Losses 

Estimated 
Reserves 

2044 5,361,236 60 54 0.45795532 2.18361915 11,706,898 6,345,662 
2045 3,636,951 48 42 0.36107995 2.76946972 10,072,426 6,435,475 
2046 3,290,333 36 30 0.24805075 4.03143313 13,264,757 9,974,424 
2047 3,333,331 24 18 0.12715441 7.8644539 26,214,828 22,881,497 
2048 1,204,564 12 6 0.02450337 40.8107171 49,159,121 47,954,557 

TOTAL 16,826,415 -----  ----- ----- ----- 110,418,029 93,591,614 
 
Provide estimates for loss development for each accident year and in total during the next 12 
months – i.e., during the period from 1/1/2049 to 12/31/2049. (Clark, p. 31) 
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Solution LDFCF-50. 
 
First, we consider the average age of each year’s reported losses. Clark assumes that the average 
age is the midpoint of the year. The average age at 12/31/2048 is given, so the average age at 
12/31/2049 for each accident year’s experience is 12 months greater.  
 
The corresponding Growth Functions at 12/31/2049 for AYs 2045 through 2048 have already 
been calculated. (They are the same as the growth functions at 12/31/2048 for the immediately 
preceding accident years.) It remains to apply the Loglogistic growth curve  
G(x │ω, θ) = xω/(xω + θω) to calculate  G(66 │1.6, 60) = 661.6/(661.6 + 601.6) = 0.53805036. 
 
The Estimated 12-Month Development in the table below is equal to  
(Ultimate Losses)*(Growth Function at 12/31/2049 - Growth Function at 12/31/2048). 
 
Accident 

Year 
Reported 

Losses 
Average 

Age (x) at 
12/31/2048 

Average 
Age (x) at 
12/31/2049 

Growth 
Function 

at 
12/31/2048 

Growth 
Function 

at 
12/31/2049 

Ultimate 
Losses 

Estimated 
12-Month 

Development 

2044 5,361,236 54 66 0.45795532 0.53805036 11,706,898 937,664 
2045 3,636,951 42 54 0.36107995 0.45795532 10,072,426 975,770 
2046 3,290,333 30 42 0.24805075 0.36107995 13,264,757 1,499,305 
2047 3,333,331 18 30 0.12715441 0.24805075 26,214,828 3,169,277 
2048 1,204,564 6 18 0.02450337 0.12715441 49,159,121 5,046,235 

TOTAL 16,826,415 -----  ----- ----- ----- 110,418,029 11,628,251 
 
 
Problem LDFCF-51. What is an ability that Clark’s Cape Cod method provides with regard to 
forecasting losses for a prospective period? How is this made possible? (Clark, p. 30) 
 
Solution LDFCF-51. Clark’s Cape Cod method enables forecasting of losses and estimation of 
reserve variability for a prospective period via the following assumptions: 
● The Cape Cod Expected Loss Ratio (ELR) has already been calculated and is assumed to be 
the same for the prospective period. 
● The on-level earned premium for the prospective period can be estimated via a premium-trend 
assumption (e.g. a growth rate of x%).  
● The mean expected loss is equal to (On-Level Earned Premium)*(Cape Cod ELR). 
● The Variance/Mean scale parameter can be assumed to be constant, allowing for an estimate of 
process variance.  
● Parameter variance can be estimated using the covariance matrix for the parameters ELR and 
ω and θ from the parametric growth curve. These parameters are also unchanged.  
● Total reserve variance is calculated as the sum of process variance and parameter variance. 
(Clark, p. 30) 
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Problem LDFCF-52. 
(a) According to Clark (p. 32), the mathematics for calculating the variability around discounted 
reserves follows directly from which three elements that are already available from Clark’s 
approach for undiscounted reserves? 
(b) To what kinds of data would the appropriateness of such a calculation be limited? 
 
Solution LDFCF-52. (a) The following already-available elements are necessary: 
Element 1. Payout pattern 
Element 2. Model parameters 
Element 3. Covariance matrix 
(b) Such a calculation would only be appropriate if paid data are being analyzed. (E.g., the 
payout pattern would not suffice if the analysis were made on incurred losses that include case 
reserves.) (Clark, p. 32) 
 
Problem LDFCF-53. 
(a) Is the coefficient of variation (CV) larger or smaller for a discounted reserve, as compared to 
an undiscounted reserve? 
(b) What explains the observation in part (a) above? (Clark, p. 32) 
 
Solution LDFCF-53. 
(a) The CV is smaller for a discounted reserve. 
(b) The “tail” of the payout curve has the greatest variance (since there is more variability in 
losses that would be paid a long time from now). With discounting, the tail also receives the 
deepest discount, as the discount factor is applied to more time periods. (Clark, p. 32) 
 
Problem LDFCF-54. 
(a) Apart from the application of Clark’s model, what two elements should be considered in the 
selection of a reserve range? 
(b) What is a term Clark uses to describe these considerations, and why is this term appropriate? 
(Clark, p. 34) 
 
Solution LDFCF-54. 
(a) (i) Changes in mix of business and (ii) the process of settling claims should be considered 
in the selection of a reserve range. 
(b) These considerations can be described as model variance, since they are factors outside of 
the model’s assumptions. (Clark, p. 34) 
 
Problem LDFCF-55. What are three advantages of using the Loglogistic and Weibull 
parametric curve forms? (Clark, p. 34) 
 
Solution LDFCF-55. The Loglogistic and Weibull parametric curve forms: 
1. Smoothly move from 0% to 100%; 
2. Often closely match the empirical data; 
3. Have directly calculable first and second derivatives, without the need for numerical 
approximations. (Clark, p. 34) 
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Problem LDFCF-56. What is generally observed to be greater for reserve estimates, parameter 
variance or process variance – and why? What would remedy this situation? (Clark, p. 35) 
 
Solution LDFCF-56. Parameter variance is generally observed to be greater than process 
variance. This indicates that the uncertainty in the estimated reserve is related more to our 
inability to reliably estimate the expected reserve, rather than to random events. What would 
remedy this is more complete data – e.g., supplementing the loss-development triangle with 
accident-year exposure information. (Clark, p. 35) 
 


